- Answer all the following questions
- Illustrate your answers with sketches when necessary.
- The exam. Consists of two pages

1. a. Prove, for a single-phase $A C$ regulator feeding a pure inductive load that the equivalent inductance seen by the AC source is:

$$
L e q=\frac{\pi L}{[2(\pi-\alpha)+\sin (2 \alpha)]}
$$

Where L is the load inductance and α is the triggering angle of the thyristor.
(7 Marks)
b. A three-phase, $380-\mathrm{V}, 50-\mathrm{Hz}$ AC regulator feeds a pure resistive load. If the value of the output phase voltage is 55 V .
i. Find the triggering angle.
ii. Draw the waveform of the output phase voltage.
(8 Marks)
2. A single-phase AC regulator feeding an inductive load of $\mathrm{R}=10 \Omega$ from a $220-\mathrm{V}, 50-\mathrm{Hz}$ AC supply. The conduction angle of the thyristor is 180° at a triggering angle of 62.1°, and the extinction angle is 239.3^{0} at a triggering angle of 75^{0}. Find:
i. The inductance value of the load.
ii. The rms value of the load voltage at $\alpha=75^{\circ}$.
iii. The fundamental power consumed by the load at $\alpha=75^{\circ}$.
(15 Marks)
3. a. The flow of power to a resistive load from an ideal sinusoidal supply is controlled by a pair of ideal inverse-parallel connected SCRs. The two switches are gated to produce four cycles of load current followed by four cycles of extinction. Find:
i. The percentage of the output voltage with respect to the supply voltage.
ii. The firing-angle, with phase-angle controlled, to produce the same load voltage. (10 Marks)
b. Derive an expression for the average output voltage for a step-up chopper with R-load, assuming that the chopper components are ideal.
(5 Marks)
c. A boost converter has an input voltage of 5 V and a resistive load R. If the required output voltage is 15 V and the average load current is 0.5 A , the chopper operates at 25 kHz . If the filter parameters are $\mathrm{L}=150 \mu \mathrm{H}$ and $\mathrm{C}=220 \mu \mathrm{~F}$, determine:
i. Duty cycle.
ii. Ripple inductor current
iii. Peak inductor current iv. Ripple voltage of the filter capacitor.
\mathbf{v}. Derive an expression of the average load voltage, if the inductance is nonideal. ($\mathbf{1 5}$ Marks)
4.a. What are the conditions required to execute dc/dc power electronic converter circuits? (5Marks)
b. What are the important features and applications of the buck-boost converters?
(5 Marks)
c. Deduce and show the waveforms of the output load voltage, for discontinuous inductor current, for two modes of operation of step-down dc/dc chopper circuit with RLE load. (10 Marks)
d. The Cùk regulator has the following parameters: $\mathrm{V}_{\mathrm{s}}=12 \mathrm{~V}, \mathrm{D}=0.25, \mathrm{~L}_{2}=150 \mu \mathrm{H}, \mathrm{C}_{2}=220 \mu \mathrm{~F}$, $\mathrm{C}_{1}=200 \mu \mathrm{~F}, \mathrm{~L}_{1}=180 \mu \mathrm{H}, \mathrm{I}_{\mathrm{a}}=1.25 \mathrm{~A}$, and $\mathrm{f}=25 \mathrm{kHz}$. Determine:
i) V_{0}
ii) I_{S}
iii) $\Delta v_{c 1}$
iv) $\Delta v_{c 2}$
v) $\mathrm{L}_{1 \text { min }}$.
vi) $\mathrm{L}_{2 \text { min }}$.
(10 Marks)

1- Expressions of a single-phase, AC voltage controller with inductive load

(i) RMS of load voltage

$$
V_{o}=V_{s} \sqrt{\frac{1}{\pi}\left\{(\beta-\alpha)+\frac{[\sin 2 \alpha-\sin 2 \beta]}{2}\right\}}
$$

(ii) The fundamental component of load voltage

$$
\begin{gathered}
a_{1}=\frac{V_{m}}{2 \pi}[\cos 2 \alpha-\cos 2 \beta] \\
b_{1}=\frac{V_{m}}{2 \pi}[2(\beta-\alpha)+\sin 2 \alpha-\sin 2 \beta] \\
\vartheta_{1}=\tan ^{-1} \frac{a_{1}}{b_{1}}
\end{gathered}
$$

2- Expressions RMS of a 3-phase AC regulator feeding a resistive load

$$
\begin{aligned}
& V_{o}=V_{s} \sqrt{\frac{1}{4 \pi}\{4 \pi-6 \alpha+3 \sin 2 \alpha\}} \quad \ldots \ldots \ldots \ldots \ldots \ldots 0 \leq \alpha \leq \pi / 3 \\
& V_{o}=V_{s} \sqrt{\frac{1}{2 \pi}\left\{\pi+\frac{3 \sqrt{3}}{2} \sin \left(\frac{\pi}{6}+2 \alpha\right)\right\}} \quad \ldots \ldots \ldots \ldots \ldots \pi / 3 \leq \alpha \leq \pi / 2 \\
& V_{o}=V_{s} \sqrt{\frac{3}{2 \pi}\left\{\frac{5 \pi}{6}-\alpha+\frac{1}{2} \sin \left(\frac{\pi}{3}+2 \alpha\right)\right\}} \quad \ldots \ldots \ldots \ldots \ldots \ldots \ldots \cdot \frac{\pi}{2} \leq \alpha \leq 5 \pi / 6
\end{aligned}
$$

Where V_{s} is the rms value of the phase voltage

1. a. Prove, for a single-phase AC regulator feeding a pure inductive load that the equivalent inductance seen by the AC source is:

$$
L_{e q}=\frac{\pi L}{[2(\pi-\alpha)+\sin (2 \alpha)]}
$$

Where L is the load inductance and α is the triggering angle of the thyristor.
Answer:

$$
\begin{aligned}
& X_{e q}=\frac{V_{s}}{I_{1}}=\frac{V_{s}}{\left(\frac{V_{1}}{X_{1}}\right)}=\frac{V_{s} X_{1}}{V_{1}} \\
& V_{1}=\frac{\sqrt{a_{1}^{2}+b_{1}^{2}}}{\sqrt{2}} \quad \& \quad \beta=2 \pi-\alpha \\
& a_{1}=\frac{V_{m}}{2 \pi}[\cos 2 \alpha-\cos 2 \beta]=\frac{V_{m}}{2 \pi}[\cos 2 \alpha-\cos 2(2 \pi-\alpha)]=\text { Zero } \\
& b_{1}=\frac{V_{m}}{2 \pi}[2(\beta-\alpha)+\sin 2 \alpha-\sin 2 \beta] \\
& \quad=\frac{V_{m}}{2 \pi}[4(\pi-\alpha)+\sin 2 \alpha-\sin 2(2 \pi-\alpha)] \\
& \quad=\frac{V_{m}}{2 \pi}[4(\pi-\alpha)+2 \sin 2 \alpha] \\
& \quad=\frac{V_{m}}{\pi}[2(\pi-\alpha)+\sin 2 \alpha] \\
& \therefore V_{1}=\frac{V_{s}}{\pi}[2(\pi-\alpha)+\sin 2 \alpha] \\
& \therefore X_{e q}=\frac{V_{s} X_{1}}{V_{1}} \\
& \therefore \omega L_{e q}=\frac{V_{s}(\omega L) \pi}{V_{s}[2(\pi-\alpha)+\sin 2 \alpha]} \\
& \therefore L_{e q}=\frac{\pi L}{[2(\pi-\alpha)+\sin 2 \alpha]}
\end{aligned}
$$

1. b. A three-phase, $380-\mathrm{V}, 50-\mathrm{Hz}$ AC regulator feeds a pure resistive load. If the value of the output phase voltage is 55 V .
i. Find the triggering angle.
ii. Draw the waveform of the output phase voltage.

Answer:

i-

$$
V_{o}=55 \mathrm{~V} \rightarrow \alpha=?
$$

at $\alpha=0^{\circ}$ then $\quad V_{o}=V_{s} \sqrt{\frac{1}{4 \pi}(4 \pi-6 \alpha+3 \sin 2 \alpha)}=220 \mathrm{~V}$
at $\alpha=\frac{\pi}{3}$ then $\quad V_{o}=V_{s} \sqrt{\frac{1}{4 \pi}(4 \pi-6 \alpha+3 \sin 2 \alpha)}=184 V$
at $\alpha=\frac{\pi}{2}$ then $V_{o}=V_{s} \sqrt{\frac{1}{2 \pi}\left(\pi+\frac{3 \sqrt{3}}{2} \sin \left(\frac{\pi}{6}+2 \alpha\right)\right)}=119 V$
at $\alpha=\frac{5 \pi}{6}$ then $V_{o}=V_{s} \sqrt{\frac{3}{2 \pi}\left(\frac{5 \pi}{6}-\alpha+\frac{1}{2} \sin \left(\frac{\pi}{3}+2 \alpha\right)\right)}=0 \mathrm{~V}$
$0 \leq \alpha \leq \frac{\pi}{3} \quad, \quad \frac{\pi}{3} \leq \alpha \leq \frac{\pi}{2} \quad, \quad \frac{\pi}{2} \leq \alpha \leq \frac{5 \pi}{6}$

$220 V \geq V_{o} \geq 184 V \quad 184 V \geq V_{o} \geq 119 V \quad 119 V \geq V_{o} \geq 0 V$
\therefore at $V_{o}=55 V$ then $\alpha=2.0217 \mathrm{rad}=115.8349^{\circ} \approx 116^{\circ}$
ii-

2. A single-phase AC regulator feeding an inductive load of $\mathrm{R}=10 \Omega$ from a $220-\mathrm{V}, 50-\mathrm{Hz} \mathrm{AC}$ supply. The conduction angle of the thyristor is 180° at a triggering angle of 62.1°, and the extinction angle is 239.3° at a triggering angle of 75°. Find:
i. The inductance value of the load.
ii. The rms value of the load voltage at $\alpha=75^{\circ}$.
iii. The fundamental power consumed by the load at $\alpha=75^{\circ}$.

Answer:

$\because \theta=180^{\circ} \quad \therefore \alpha=\phi$
i-

$$
\begin{aligned}
& \therefore \phi=62.1^{\circ} \\
& \tan \phi=\frac{\omega L}{R} \quad \rightarrow \quad L=\frac{R \tan \phi}{\omega}=60 \mathrm{mH}
\end{aligned}
$$

ii-

$$
\begin{aligned}
\because & \alpha=75^{\circ} \quad, \quad \beta=239.3^{\circ} \\
V_{o} & =V_{s} \sqrt{\frac{1}{\pi}\left\{(\beta-\alpha)+\frac{1}{2}[\sin 2 \alpha-\sin 2 \beta]\right\}} \\
& =220 \sqrt{\frac{1}{\pi}\left\{2.8676+\frac{1}{2}[\sin 150-\sin 478.6]\right\}} \\
& =203.14 \mathrm{~V}
\end{aligned}
$$

iii-

$$
\begin{aligned}
& V_{1}=\frac{\sqrt{a_{1}^{2}+b_{1}^{2}}}{\sqrt{2}} \\
& a_{1}=\frac{V_{m}}{2 \pi}[\cos 2 \alpha-\cos 2 \beta]=-19.18 \\
& b_{1}=\frac{V_{m}}{2 \pi}[2(\beta-\alpha)+\sin 2 \alpha-\sin 2 \beta]=265.275 \\
& \therefore V_{1}=188 V \\
& \therefore I_{1}=\frac{V_{1}}{Z_{1}}=\frac{188}{\sqrt{10^{2}+(2 \pi \times 50 \times 0.060)^{2}}}=8.81 \mathrm{~A} \\
& \therefore \theta_{1}=\tan ^{-1} \frac{a_{1}}{b_{1}}=-4.14^{\circ} \\
& \therefore P_{1}=V_{s} I_{1} \cos \alpha=220 \times 8.81 \times \cos 62.1=907 \text { Watt } \\
& \text { or } \therefore P_{1}=V_{1} I_{1} \cos \alpha=188 \times 8.81 \times \cos 62.1=775 W a t t
\end{aligned}
$$

3. a. The flow of power to a resistive load from an ideal sinusoidal supply is controlled by a pair of ideal inverse-parallel connected SCRs. The two switches are gated to produce four cycles of load current followed by four cycles of extinction. Find:
i. The percentage of the output voltage with respect to the supply voltage.
ii. The firing-angle, with phase-angle controlled, to produce the same load voltage. ($\mathbf{1 0}$ Marks)

Answer:
$\because n=4, m=4$
i-

$$
V_{o}=\sqrt{K} V_{s}=\sqrt{\frac{4}{4+4}} V_{s}=\sqrt{0.5} V_{s}=0.707 V_{s} \rightarrow \% \frac{V_{o}}{V_{s}}=70.7 \%
$$

ii-

$$
\frac{\sqrt{0.5} V_{s}}{R}=\frac{V_{s} \sqrt{1-\frac{\alpha}{\pi}+\frac{\sin 2 \alpha}{2 \pi}}}{R} \rightarrow \alpha=90^{\circ}
$$

3. b. Derive an expression for the average output voltage for a step-up chopper with R-load, assuming that the chopper components are ideal.
(5 Marks)

Answer:

For $O N$ - state of the switch:

$$
\begin{aligned}
& v_{s}-v_{L}=0 \\
& V_{s}-L \frac{\Delta I_{O N}}{t_{O N}}=0 \\
& \therefore \Delta I_{O N}=\frac{V_{s}}{L} t_{O N}
\end{aligned}
$$

For OFF - state of the switch:
$v_{s}+v_{L}-v_{o}=0$
$V_{s}+L \frac{\Delta I_{\text {OFF }}}{\left(T-t_{O N}\right)}=V_{o}$
$\therefore \Delta I_{\text {OFF }}=\frac{V_{o}-V_{s}}{L}\left(T-t_{\text {ON }}\right)$

$$
\begin{aligned}
& \because \Delta I_{\text {ON }}=\Delta I_{\text {OFF }} \\
& \therefore V_{o}=\frac{V_{s}}{1-D}
\end{aligned}
$$

3. c. A boost converter has an input voltage of 5 V and a resistive load R. If the required output voltage is 15 V and the average load current is 0.5 A , the chopper operates at 25 kHz . If the filter parameters are $\mathrm{L}=150 \mu \mathrm{H}$ and $\mathrm{C}=220 \mu \mathrm{~F}$, determine:
i. Duty cycle.
ii. Ripple inductor current
iii. Peak inductor current
iv. Ripple voltage of the filter capacitor.
\mathbf{v}. Derive an expression of the average load voltage, if the inductance is nonideal.
(15 Marks)

Answer:

i-

$$
V_{o}=\frac{V_{s}}{1-D} \rightarrow D=1-\frac{V_{s}}{V_{o}}=1-\frac{5}{15}=\frac{2}{3}
$$

ii-

$$
\Delta I_{L}=\frac{V_{s} D}{L f}=\frac{5 \times \frac{2}{3}}{150 \times 10^{-6} \times 25 \times 10^{3}}=0.89 \mathrm{~A}
$$

iii-

$$
I_{L(\max)}=I_{L}+\frac{\Delta I_{L}}{2}=\frac{V_{s}}{(1-D)^{2} R}+\frac{\Delta I_{L}}{2}=\frac{5}{\left(1-\frac{2}{3}\right)^{2} \times \frac{15}{0.5}}+\frac{0.89}{2}=1.945 \mathrm{~A}
$$

iv-

$$
\Delta V_{o}=\Delta V_{c}=\frac{V_{o} D}{R C f}=\frac{15 \times \frac{2}{3}}{\frac{15}{0.5} \times 220 \times 10^{-6} \times 25 \times 10^{3}}=0.0606 \mathrm{~V}=60.6 \mathrm{mV}
$$

v-
\because input power $=$ output power

$$
\begin{gathered}
P_{i}=P_{o}+P_{\text {loss }} \\
V_{s} I_{s}=V_{o} I_{o}+I_{L}^{2} r_{L} \\
V_{s} \times \frac{I_{o}}{1-D}=V_{o} I_{o}+\frac{I_{o}^{2}}{(1-D)^{2}} r_{L} \\
\frac{V_{s}}{1-D}=V_{o}+\frac{I_{o}}{(1-D)^{2}} r_{L} \\
\frac{V_{s}}{1-D}=V_{o}+\frac{V_{o}}{R(1-D)^{2}} r_{L} \\
\therefore V_{o}=\frac{V_{s}}{1-D}=V_{o}\left[1+\frac{r_{L}}{R(1-D)^{2}}\right] \\
(1-D)\left[1+\frac{V_{L}}{R(1-D)^{2}}\right]
\end{gathered}
$$

4. a. What are the conditions required to execute de/dc power electronic converter circuits? (5 Marks)

Answer:

- Power electronic devices have high-frequency.
- Regulate the dc output voltage with wide range.
- Vin >or < Vout
- The transformers, filter inductors, and capacitors used are smaller and lighter.
- The ac voltage ripple on the dc output voltage must be very low.
- Provide isolation between the input source and the load (isolation is not always required).
- Protect the supplied system and the input source from electromagnetic interference (EMI).

4. b. What are the important features and applications of the buck-boost converters?
(5 Marks)

Answer:

The important featuresfor the buck-boost converter:

- The gain (D) may be set below or above unity (hence buck-boost converter). The output polarity is opposite to that of the input polarity.
- The gain is independent of the switching frequency so long as (TS $\ll \mathrm{RC}$). However this design inequality is a function of the load.
- The output voltage ripple percentage is dependent on the load on the converter. The output ripple has a first order roll-off with the switching frequency.
- In practice buck-boost converters are not operated beyond a duty ratio of about $1 / 2$ to 2/3.
- The efficiency of power conversion is good when and $\mathrm{RL} ; \mathrm{Rg} \ll \mathrm{R}$; $\mathrm{Vsn} \ll \mathrm{Vg}$; Vsf \ll Vo at low duty ratios.
- f. The input current is discontinuous and pulsating. It will therefore be necessary to have an input filter also with buck-boost converter, if the source is not capable of supplying such pulsating current.
- The applications of the buck-boost converter:
- Switch mode power supplies (SMPS), Uninterruptable power supplies (UPS), wind turbine charging a battery bank, 3 - Smart grid, class c for dc drives.

4. c. Deduce and show the waveforms of the output load voltage, for discontinuous inductor current, for two modes of operation of step-down dc/dc chopper circuit with RLE load.
(10 Marks)
Step-down dc/dc chopper circuit with RLE load.

The output load dc voltage

$$
\begin{aligned}
\mathrm{V} & =\mathrm{i}_{\mathrm{o}} \mathrm{R}+\mathrm{L}(\mathrm{di} / \mathrm{d} / \mathrm{dt})+\mathrm{E} \\
\mathrm{~V}_{\mathrm{o}} & =\mathrm{V}_{\mathrm{a}}=\frac{1}{T}\left[\int_{0}^{\text {fon }} V_{s} d t+\int_{\text {ton }}^{T} 0 d t\right] \\
& =\mathrm{V}_{\mathrm{s}}\left(\frac{t_{\text {on }}}{T}\right)=\mathrm{ft}_{\mathrm{on}} \mathrm{~V}_{\mathrm{s}} \\
& =\mathrm{V}_{\mathrm{s}} \mathrm{~d} \text {, the range of } \mathrm{V}_{\mathrm{o}}\left(0 \rightarrow \mathrm{~V}_{\mathrm{s}}\right)
\end{aligned}
$$

Function of the dc-dc converter

$$
\mathrm{d}=\frac{V_{0}}{V_{s}}=\text { duty cycle of switch } \quad(0 \rightarrow 1)
$$

- The r.m.s value of output voltage is

$$
\mathrm{V}_{\mathrm{o}(\mathrm{rms})}=\sqrt{\left(\frac{1}{T} \int_{0}^{\mathrm{d} T} v_{o}^{2} d t\right)}=V_{s} \sqrt{\mathrm{~d}}
$$

In case of discontinuous load current,

$$
\begin{gathered}
I_{\min }=\frac{V}{R}\left[\frac{e^{\mathrm{d} R T / L}-1}{e^{R T / L}-1}\right]-\frac{E}{R}=0 \\
\frac{V_{c}}{V_{s}}=\frac{e^{\left(\mathrm{t}_{\mathrm{on}}^{\mathrm{x}} / \tau\right)(T / \tau)}-1}{e^{T / \tau}-1} \text { Or } \frac{E}{V_{s}}=\mathrm{m}=\left(\mathrm{e}^{\rho \sigma}-1\right) /\left(\mathrm{e}^{\sigma}-1\right) \\
\rho=\frac{t_{\mathrm{on}}^{x}}{T}=\mathrm{D}^{\alpha}, \sigma=\frac{T}{\tau}
\end{gathered}
$$

$$
\begin{aligned}
& m=\left(e^{\rho \sigma}-1\right) /\left(e^{\sigma}-1\right) \\
& \text { at } \mathrm{t}=\mathrm{t}_{\mathrm{x}}, \mathrm{t}^{*}=\mathrm{t}_{\mathrm{x}}-\mathrm{t}_{\mathrm{on}} \text { the value } \mathrm{I}_{\text {min }}=\mathrm{zero} \\
& \mathrm{I}_{\mathrm{p}}=\frac{V_{s}-V_{c}}{R}\left(1-\mathrm{e}^{-\mathrm{t}_{\mathrm{on}} / \tau}\right) \quad\left(0 \leq \mathrm{t}_{\mathrm{on}}<\mathrm{t}_{\mathrm{on}}^{\mathrm{x}}\right) \\
& \mathrm{i}_{\mathrm{o}}=-\frac{V_{c}}{R}\left(1-\mathrm{e}^{-\mathrm{t}^{*} / \tau}\right)+\mathrm{I}_{\mathrm{p}} \mathrm{e}^{-\mathrm{i}^{* / \tau}} \quad\left(0 \leq \mathrm{t}_{\mathrm{on}}<\mathrm{t}_{\mathrm{on}}^{\mathrm{x}}\right) \\
& \mathrm{t}^{\star}=\frac{L}{R T} \ln \left[1+\frac{E}{V}\left(e^{n T / L}-1\right)\right] \\
& \mathrm{t}_{\mathrm{x}}=\mathrm{t}_{\mathrm{on}}+\mathrm{t}^{*} \\
& \left.\mathrm{t}_{\mathrm{x}}=\operatorname{ton}+\tau \operatorname{Ln}\left\{\mathrm{e}^{\operatorname{ton} / \tau}\left[\frac{V_{+}-\left(\mathbf{(1}-\mathbf{e}^{-\operatorname{ton} / \tau}\right)}{V_{C}}\right)\right]\right\}
\end{aligned}
$$

4. d. The Cùk regulator has the following parameters: $\mathrm{V}_{\mathrm{s}}=12 \mathrm{~V}, \mathrm{D}=0.25, \mathrm{~L}_{2}=150 \mu \mathrm{H}, \mathrm{C}_{2}=220 \mu \mathrm{~F}$, $\mathrm{C}_{1}=200 \mu \mathrm{~F}, \mathrm{~L}_{1}=180 \mu \mathrm{H}, \mathrm{I}_{\mathrm{a}}=1.25 \mathrm{~A}$, and $\mathrm{f}=25 \mathrm{kHz}$. Determine:
i) V 。
ii) I_{5}
iii) $\Delta \mathrm{v}_{\mathrm{cl}}$
iv) $\Delta v_{\mathrm{c} 2}$
v) $\mathrm{L}_{1 \text { min }}$
vi) $L_{2 \text { min }}$
(10 Marks)
Answer:
i) $\mathrm{Vo}=-\mathrm{DVs} /(1-\mathrm{D})$
$\mathrm{V}_{0}=-4 \mathrm{~V}$
ii) $\frac{I_{E_{1}}}{I_{E_{2}}}=-\frac{V_{c}}{V_{s}}$

$$
\mathrm{I}_{8}=0.42 \mathrm{~A}
$$

iii) $\Delta v_{c 1}=\frac{1-D}{8 L_{2} C_{2} f^{2}}=63 \mathrm{mV}$
iv) $\Delta v_{c 2}=\frac{V(1-D)}{8 C_{2} L_{2} f^{2}}=18.18 \mathrm{mV}$
v) L1min $=\frac{(1-D)^{2} R}{2 D f} \quad=0.54 \mathrm{mH}$
vi) L2min. $=\frac{(1-D) R}{2 f}=0.18 \mathrm{mH}$

